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DAMPiING OF COLLECTIVE MODES
AS OPEN QUANTUM SYSTEMS

A.Sandulescu, H.Scutaru

In the framework of the Lindblad theory for open
quantum systems the following results are obtained:
a generalization of the fundamental constraints on
quantum mechanical diffusion coefficients which ap-
pear in the corresponding master equations, a genera-
lization of the Hasse pure state condition and
a generalized Schrddinger type nonlinear equation
for an open system. Also, the Schrbdinger, Heisenberg
and Weyl-ngner—Moyal representations of the Lind-
blad equation are given explicitly. Based on these
representations, one shows that various master equa-
tions for the damped quantum oscillator used in the
literature for the description of the damped col-
lective modes in DIC are particular cases of the
Lindblad equation and that the majority of these
equations are not satisfying the constraints on quan-
tum mechanical diffusion coefficients.

The investigation has been performed at the La-
boratory of Nuclear Reactions, JINR.

3aTyxaHue KOANEKTUBHEIX Mo
KakK 300eKT OTKPHTHX KBAHTOBBIX CUCTEM

A.Csngynecky, X.CkyTrapy

B pamxax Teopunm JluHO6rama IS OTKDBITHIX KBaHTOBBIX
cucTeM ObulM TOJIVYeHH ClleflyiolHe pesyibLTATH: o6o6meHue
COOTHOWEHHA I OrpaHHUYeHHA KosdduuueHTOB muddysuu,
0606meHHOe YCJIOBHEe [JIS CYHeCTBOBAHHS YHCThIX COCTOH~
HHUH H o6o6meHHOe ypaBHeHHe THIa llpenuHrepa ans oTKpb-
THIX CHCTeM. BrulM mMOJSIyuyeHs! Takke B ABHOM BHAe IIpefCTaB-—
nenus llpeaunrepa, Teitsenbepra u Bafima-BurHepa-Mofiana
ypaBHeHus Jlunp6nana. Ha ocHoBe »TUX npencTaBiieHui
GBUIO TTIOKA3aHO, YTO MHOTHE YpaBHEHHA OJIf r'apMOHHYECKO-—
FO OCHWIIATOPA C AMCCHTAnMeH 3HepruH, HCIIOJb30BAaHHLBE
B NHUTepaType [JiA ONHCAHHA 3aTYXAHHA KOJUIEKTHBHBIX MOII,
OpencTaBiIsOT CO60H 4YacTHele Cliyuay ypaBHeHus JluHmg-—
6nana M GONBHIMHCTBO 5THUX YPABHEHMI HE BBIIOJIHIET CO—
OTHOWEHHA AN OrpaHudeHusa KosbhdunueHTOB Oubdy3uu,
BRITEKAWIMHX H3 NPHHUWINA HeonpenelleHHOCTH.

Pa6ora BrhmonHeHa B JlaBopaTOpHM AOEPHBIX peakiuil
onAn.



The only systems for which we can study experimental-
ly the dynamics of nuclear matter are the deep inelastic
collisions (DIC). In the last years a large body °917X_
perimental data has been accumulated in this field
which allows a vivid discussion between the two extreme
theoretical approaches; the transport theories which view
this process as being due to independent particle propa-
gation thus stressing the stochastic, random walk nature
of the relaxation phenomenon 2/ and the quantum mechani~
cal collective theories which view this process as being
due to large scale collective modes thus stressing the
coherent nature of the relaxation phenomenon

It is now widely admitted that the description of the
friction in quantum mechanics is far from trivial. Perhaps,
the greatest difficulty arises from the fact that in clas-
sical mechanics the dissipation of the energy is direct-
ly related to the presence of a nonzero momentum (the
friction force is proportional to the velocity). On the
other hand it is known that such systems with forces pro-
portional to the velocities cannot be described by the
standard Hamiltonian mechanics and that the Liouville
theorem is not valid. Such forces, which cause a decrease
in the phase space volume, are more suitable described
in the frame of the theory of stochastic processes.

In order to prevent the fall in time of any finite
volume in phase space into a volume smaller than @1/2)"

a diffusion process (stochastic process) which increases
the volume in phase space is needed. An equilibrium state
is a state in which these two opposite tendencies balance.
It follows that in order to obtain a quantum theory for
systems with friction forces it is necessary to under-
stand how such quantum diffusion processes arise which
balance the friction forces and prevent the violation of
the uncertainty relations.

In the literature there are an enormous number of pa-
pers which try to solve this problem by introduction, in
addition to the friction forces, of some diffusion coef-
ficients, using quite different and contradictory argu-
ments.

In the present paper, we extend our previous work
on the dynamics of charge equilibration in damped heavy
ion collisions as a large scale collective mode by desc-
ribing the corresponding collective mode as an open quan-
tum system. We adopt the Lindblad axiomagic way of in-
troducing dissipation in quantum mechanics "®®/ based on
completely positive dynamical semigroups with bounded ge-
nerators.

‘4/

6



We succeeded to obtain: a generalization of the funda-
mental constraints on quantum mechanical diffusion coef-
ficients which appear in the corresponding master equa-
tion, a generalization of the Hasse pure state conditi-
on and a generalized Schrddinger type nonlinear and non-
hermitic equation for an open system. Based on the Schri-
dinger, Heisenberg and Weyl-Wigner-Moval representations
of the Lindblad master equations we show that various
master equations for the damped quantum oscillator used
in the literature for the description of the damped col-
lective modes in DIC are particular cases of the Lind-
blad equation and that the majority of these equations
are not satisfying the constraints on quantum mechanical
diffusion coefficients.

The Lindblad . master equations are of the following
form:
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where p(t) is the density matrix and V; the corresponding
bounded operators.

Also Lindblad proposed a model for the damped quantum
harmonic oseillator with unbound V; of the form V; =
=ap +qu s 1 = 1,2, where a;, hj are complex numbers;
and q and p, the usual operators with the commutation re-
lation fq. pl=ifi. For this model eq.‘l) becomes
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Here we denoted by Dpps qu, D“Pand Dh the diffusion

coefficients and by A the frictien constant, all the pa-
rameters being real and related to the complex numbers a;
and bj by the relations
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where 2. means the complex conjugate of a;.
Thus, the following constraints for the quantum mecha-
nical diffusion coefficients result:
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the last inequality being a consequence of the Schwartz
inequality
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In the Heisenberg representation the master eq.(l) is:

a0 -4 1 .
" LA®)= % [H, A®)] + o ?(Vj*[A(t), Vj]+[Vj , A®)] vj).
(6)

If the time evolution of the operator M=2.Vj"=vj is

considered we obtain from the 2-positivity of the dynami-
cal semigroup generated by (6) that
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From this relation an inequality for mean values of
M ,V* and V; follows immediately if we observe that
the map A-» TrpA 1is also 2-positive.

Tr pM(t) z? Tr(pV; ©*) Tr(pV; (). (8)

By the duality Trp(A(t)) =Trp(t)A rel.(8) becomes:
Tr(p(t) X VAV 2 ETe(p®OVHTI(e®V,). 9)
i i

This inequality is a generalization of the inequality
(11) from ref. ® to all Markovian master equations.

For the damped quantum harmonic oscillator, the above
inequality becomes:
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where we have used the notations
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The equality in rel.(9) is a necessary and sufficient
condition for p(t) to be a pure state for all time t > 0.
Indeed, the condition p?t)=p(@) which is a necessary and
suff1c1ent condition for p(t) to be a pure state gi-
ves Trp(t)— 1 for all t> 0.This implies:

L M0 - THOLE®) = 0 t> 0, (12)

or by using the explicit form of L{p(t)) given by eq. (1)
1
Tr(ptL(p(t)) = -a; 2 (Tr (‘P(t)V‘i P(t)Vj*) - Tf(f’(t)g"'j"‘vj ) (13)

and the conditions p'(t)-— pt) and p(M) Ap(t)="Tr(pt)A)p(t)
we have

T® VIV) =X T () V) Tr(pOV)). (14)
J

This equality is a generalization of the Hasse pure
state condition’’”%to all Markovian master equations.

The condition pg(t) p(t) implies firstly that p(t)¢ =
= (Y1), 4) ¥ () for any wave function ¢ and secondly that its
derivative

do®) _ dp)®
dt dt

=L®))p®) + pt) L(pt)) (15)

is equivalent with the following Schrddinger type nonli-
near and nonhermitic equation:

d—th--(nuz(w(t) VIOV, -
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This result is a generalization to all Markovian master
equations of the results obtained for particular master
equations in refs.’19/ apngq /7.8/,

For the damped quantum harmonic oscillator the new
"Hamiltonian" is
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It is interesting to remark that the mean value of this
new "Hamiltonian" is equal to the mean value of the origi-
nal Hamiltonian H if the equality, is valid in the inequ-
ality (10). In this last case the new "Hamiltonian" is
equal to

H+ Ao (3 -0, ©P)- 1D, ®- o ®) s D _@- oq(t))2+

iy, U8
+ Dpg (P~ 0, 1)) @~ o)+ @~ )P~ o, 1) ~ —= i,

This result, from the physical point of view, is quite
natural since the average value of the new "Hamiltonian"
of the nonlinear and nonhermitic Schrédinger equation
describing the open system must give the energy of the
open system.

Another possible representation of the Lindblad mas-—
ter equation is the Weyl-Wigner-Moyal representation.
This is a phase-space representation of the quantum me-
‘chanics.Roughly speaking such a representation is a map-—
ping from the Hilbert space operators to the functions on
the classical phase space in such a way that if A is
mapped into fA(x.y) and p is mapped onto féx,y),then

Tr(pA) =_f [l y)f,(x,y) dxdy. (19)
This representation can be easily obtained by using
Wigner mapping of the density operators p(t) from the Hil-
bert space onto the functions fpaﬁx,y) on the classical

phase space
. o oo "-(X'I’—yf)
fx,y,t)=t (X.y)=—--1-— [ e $

. Tr(p (MW (£, n))dédy,
P(t) (2 ﬂh) 2 —00 —oc

(20)
where W({, 77) is the Weyl operator.

Indeed, taking the time derivative of the Wigner
function (20), using the master equation in the Heisen-
berg representation (6) and the explicit action of the
dynamical semigroup on the Weyl operators we obtain:

10



_—_S—._—_..)_af Xyt ==L ——-———-—------af &, y.%) + Mw?x m&f(x,y.t) + (A‘l‘)—-‘—*‘——axux'y't) +
at m ax ay ox

2 .
RN I (CR AD NN & (¢ R WA 9 "1,y oD azf(x,y,t')‘
dy s ax2 PP gy2 P1 5x9y
(21)
This equation looks very classical, like an equation of
the Fokker-Planck type, but we must be very careful with
the initial function f(x,y, 0) on the phase space which
must be a Wigner transform of a density operator in or-
der to keep the quantum mechanical properties of the sys-
tem.

Because the most frequently choice for f(x,y, 0) is
a Gaussian function and because eq.(21) preserves this
Gaussian type, i.e., f(x,y, t) 1is also a Gaussian function,
the differences between the quantum mechanics and classi-
cal mechanics are completely lost in this representation
of the master equation. This is a possible explanation
for the frequently occurred ambiguities on this subject
in the literature.

In the following we show that various master equations
for the damped quantum oscillator used in the literature
for the description of the damped collective modes in DIC
are particular cases of the Lindblad equation and that
the majority of these equations are not satisfying the
constraints on quantum mechanical diffusion coefficients.

Indeed, in the form (3) a direct comparison with eq. (1)
from refs.’7'10-12/ g possible. It follows that this mas-
ter equation supplemented with the fundamental constraints
(5) is a particular case of eq.(3), when pu=A.

Also a particular case of eq.{3) is the master equa-
tion (12) considered in ref.” 13/ for A= ylw)/2m = u3 Dy, =03
Dyp = ¥@)T*w); and D,q = 0. Evidently the constraints (5)
are not satisfied. :

Analogously, the master equation (A.36) considered in
ref. is a particular case of eq.(3) for A=p=y/2;
= D; Dgq = 0; Dpg=Dqp=-d/2and Hy=p72m+ %m(w? -k3q
Again the constraints (5) are not satisfied.

In the form ‘21) a direct comparison with two kinds of
quantum master equations, written for the Wigner transform
of the density matrix, obtained recently in ref./14/ ig
possible. na

The first master equation (see eq.(5.1) of ref. f
is a particular case of eq. (21) for A=p =[/2 3 Dpp =D/23

Dgq = 03 Dpq=Dyp, =B/2 and H=H, -é—'él@q?u(t)q‘. Evident-

Dop

ly the constraints (5) are not satisfied.
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The second master equation (see eq. (5.6) of ref./14/)
is also a particular case of eq. (21) for g = 0; q;l=
11 1o | p 1 ol I mg 2

II 29
-§ﬁ~—9 +ft)q. This equation satisfies the fundamental
(3]

constraints (5).

Finally we should like to stress that the collective
fluctuations have not been revealed with clarity by expe-
riment. Now it is clear that, due to the similarity of
the equations and solutions in both extreme theoretical
approaches: transport theories and quantum collective theo-
ries, the effects are similar. We consider that it is pre-
mature to conclude, like the majority of the recent pa-
pers/lﬁ that the present data suggest that the dynamical
evolution of the dinuclear system may be.seen as an inde-
pendent particle exchange process constrained by the under-
lying potential energy surface (PES).
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